3.79 \(\int \sqrt{a+a \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec ^2(c+d x) \, dx\)

Optimal. Leaf size=94 \[ -\frac{a (A-2 C) \sin (c+d x)}{d \sqrt{a \cos (c+d x)+a}}+\frac{A \tan (c+d x) \sqrt{a \cos (c+d x)+a}}{d}+\frac{\sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

[Out]

(Sqrt[a]*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (a*(A - 2*C)*Sin[c + d*x])/(d*Sqrt[a
+ a*Cos[c + d*x]]) + (A*Sqrt[a + a*Cos[c + d*x]]*Tan[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.296169, antiderivative size = 94, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.114, Rules used = {3044, 2981, 2773, 206} \[ -\frac{a (A-2 C) \sin (c+d x)}{d \sqrt{a \cos (c+d x)+a}}+\frac{A \tan (c+d x) \sqrt{a \cos (c+d x)+a}}{d}+\frac{\sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2,x]

[Out]

(Sqrt[a]*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (a*(A - 2*C)*Sin[c + d*x])/(d*Sqrt[a
+ a*Cos[c + d*x]]) + (A*Sqrt[a + a*Cos[c + d*x]]*Tan[c + d*x])/d

Rule 3044

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n +
2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b
*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0
])

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx &=\frac{A \sqrt{a+a \cos (c+d x)} \tan (c+d x)}{d}+\frac{\int \sqrt{a+a \cos (c+d x)} \left (\frac{a A}{2}-\frac{1}{2} a (A-2 C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{a}\\ &=-\frac{a (A-2 C) \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)}}+\frac{A \sqrt{a+a \cos (c+d x)} \tan (c+d x)}{d}+\frac{1}{2} A \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=-\frac{a (A-2 C) \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)}}+\frac{A \sqrt{a+a \cos (c+d x)} \tan (c+d x)}{d}-\frac{(a A) \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}-\frac{a (A-2 C) \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)}}+\frac{A \sqrt{a+a \cos (c+d x)} \tan (c+d x)}{d}\\ \end{align*}

Mathematica [A]  time = 0.226289, size = 91, normalized size = 0.97 \[ \frac{\sec \left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \sqrt{a (\cos (c+d x)+1)} \left (2 \sin \left (\frac{1}{2} (c+d x)\right ) (A+2 C \cos (c+d x))+\sqrt{2} A \cos (c+d x) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2,x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]*(Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c +
 d*x] + 2*(A + 2*C*Cos[c + d*x])*Sin[(c + d*x)/2]))/(2*d)

________________________________________________________________________________________

Maple [B]  time = 0.102, size = 436, normalized size = 4.6 \begin{align*}{\frac{1}{d}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( \left ( -2\,A\ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a-2\,A\ln \left ( 4\,{\frac{a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a-8\,C\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,A\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a}+A\ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a+A\ln \left ( 4\,{\frac{a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a+4\,C\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \right ){\frac{1}{\sqrt{a}}} \left ( 2\,\cos \left ( 1/2\,dx+c/2 \right ) -\sqrt{2} \right ) ^{-1} \left ( 2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2} \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{a \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^2*(a+a*cos(d*x+c))^(1/2),x)

[Out]

cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*((-2*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-2*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*
(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a))*a-8*C*2^(1/2)*(a*sin(1/2*d*
x+1/2*c)^2)^(1/2)*a^(1/2))*sin(1/2*d*x+1/2*c)^2+2*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+A*ln(-4/(-2
*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a)
)*a+A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^
2)^(1/2)+2*a))*a+4*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/(2
*cos(1/2*d*x+1/2*c)+2^(1/2))/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

Maxima [B]  time = 2.13161, size = 987, normalized size = 10.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/4*(8*sqrt(2)*C*sqrt(a)*sin(1/2*d*x + 1/2*c) - (4*sqrt(2)*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*c
os(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - 4*sqrt(2)*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) - (cos(2*d*x + 2*c)^2 +
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2
*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*s
in(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^
2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x +
 c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x
+ c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x
+ c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arc
tan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1
/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(5/2*d*x + 5/2*c) + 4
*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arct
an2(sin(d*x + c), cos(d*x + c))) - 4*sqrt(2)*sin(3/2*d*x + 3/2*c))*A*sqrt(a)/(cos(2*d*x + 2*c)^2 + sin(2*d*x +
 2*c)^2 + 2*cos(2*d*x + 2*c) + 1))/d

________________________________________________________________________________________

Fricas [A]  time = 1.50052, size = 413, normalized size = 4.39 \begin{align*} \frac{{\left (A \cos \left (d x + c\right )^{2} + A \cos \left (d x + c\right )\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \,{\left (2 \, C \cos \left (d x + c\right ) + A\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{4 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*((A*cos(d*x + c)^2 + A*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x
 + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(2*C*cos(d*x
+ c) + A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**2*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.53461, size = 374, normalized size = 3.98 \begin{align*} \frac{\frac{4 \, \sqrt{2} C a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}} + A \sqrt{a} \log \left ({\left |{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - a{\left (2 \, \sqrt{2} + 3\right )} \right |}\right ) - A \sqrt{a} \log \left ({\left |{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + a{\left (2 \, \sqrt{2} - 3\right )} \right |}\right ) + \frac{4 \, \sqrt{2}{\left (3 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} A a^{\frac{3}{2}} - A a^{\frac{5}{2}}\right )}}{{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/2*(4*sqrt(2)*C*a*tan(1/2*d*x + 1/2*c)/sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) + A*sqrt(a)*log(abs((sqrt(a)*tan(1/
2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - A*sqrt(a)*log(abs((sqrt(a)*tan(
1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)*(3*(sqrt(a)*tan(1/2
*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*a^(3/2) - A*a^(5/2))/((sqrt(a)*tan(1/2*d*x + 1/2*c) -
sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^
2*a + a^2))/d